Alkyl Isocyanides Promoted Synthesis of Functionalized Azadienes from Dialkyl Acetylene Dicarboxylates and N-Hydroxysuccinimide

ZAHRA KHEIRI POUR¹, BITA MOHTAT^{1*}, HOORIEH DJAHANIANI²

¹ Department of chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran

² Department of chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran

The reaction between N-Hydroxy succinimide with dialkyl acetylene dicarboxylates in the presence of isocyanides, leads to functionalized azadienes in good yields. The product were analized and the structures of reaction compounds were deduced from their IR, ¹HNMR and ¹³CNMR spectra.

Keywords: azadienes, alkyl isocyanides, dialkyl acetylene dicarboxylates, N-hydroxysuccinimide

Succinimide and its N-substituted derivatives are the key structural units in many important compounds including plant growth stimulators, additives for lubricative oils, corrosion inhibitors, and anti-convulsants drugs for memory enhancement, anti-tumor agents and for other purposes [1–7].

On the other hand MCRs that involve isocyanides are by far the most flexible reactions in terms of scaffolds and versatile compounds [8, 9]. The trapping of the 1:1 intermediate formed between dialkyl acetylenedicarboxylates and isocyanides with OH, NH, and CH acids has been widely studied [10–12].

Moreover azadienes have been employed in a range of different reactions to access a wide variety of Nheterocycles, including e.g. di- and tetrahydropyridines, pyrimidines, quinolines, thiazines, pyrroles, triazinane diones, and aziridines [13–16]. The reactivity that a 1azadiene displays in a given reaction depends both on the reaction partner and on the nature of the substituents [17].

In combination with MCR-based strategies, 1-azadienes represent a challenging array of functionalities that can be employed to explore chemical space efficiently and identify small molecular probes for biology [18–22].

Recently, we have described a convenient method for the preparation of l-azabutadienes, by three component reactions of some NH and OH acids with dialkyl acetylenedicarboxylates and alkyl isocyanides [23-26]. In continuation of our interest in the application of isocyanides in MCRs [27, 28], we extend this methodology using Nhydroxysuccinimide. Thus, the reaction of alkyl isocyanides 1 and dialkyl acetylenedicarboxylates 2 in the presence of strong OH-acid, such as N-Hydroxysuccinimide **3** leads 1-Azadienes **4** in good yields (scheme 1).

Experimental part

General

Elemental analyses for C, H, and N were performed using a Heraeus CHN-O-Rapid analyzer. IR spectra were measured on a Perkin Elmer Precisely-100 FTIR spectrometer. ¹H and ¹³C NMR spectra were measured with a Bruker DRX-300 AVANCE instrument with CDCl₃ as solvent at 300.1 and 75.5 MHz, respectively. Mass spectra were recorded on a Finnigan-Matt 8430 mass spectrometer operating at an ionization potential of 70 eV. Alkyl isocyanides, alkyl acetylene dicarboxylates and N-Hydroxysuccinimide were obtained from Merck and were used without further purification.

Typical procedure for preparation of compounds 4

To a magnetically stirred solution of N-Hydroxysuccinimide (2 mmol) and dimethyl acethylene dicarboxylate (2 mmol) in CH₂Cl₂ (6 mL), was added drop wise a mixture of cyclohexyl isocyanide (2 mmol) in CH₂Cl₂ (3 mL) at room temperature over 10 min. After completion of the reaction [24 h; TLC (hexane/AcOEt 2:1)], the solvent was evaporated and the residue was purified by column chromatography [silica gel (230–240 mesh; Merck), hexane/AcOEt 2:1)].

Dimethyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (cyclohexyl imino) methyl]-2- buthene dionate (4a)

Colorless oil yield 0.60 g (82%); IR (KBr): 1659 (C=N), 1737 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.24-1.65

Scheme 1. Synthesis of compounds ${\bf 4}$

1	R	2	R'	4	R	R'	yield of 4 %
a	c-Hexyl	a	Me	а	c-Hexyl	Me	82
b	t-Butyl	b	Et	b	c-Hexyl	Et	87
с	1,1,3,3-tetra methyl Butyl	с	t-Butyl	с	c-Hexyl	t-Bu	74
			1	d	t-Butyl	Me	86
				e	t-Butyl	Et	81
				f	1,1,3,3-tetra methyl Butyl	Me	83
				g	1,1,3,3-tetra methyl Butyl	Et	82

* email: b_mohtat@yahoo.com; Phone: 00982122921610

(10H, m, 5CH₂), 2.79 (4H, s, 2CH₂), 3.08 (1H, m, CH), 3.87 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 7.20 (H, s, CH). ¹³C NMR (75 MHz, CDCl₃): δ 23.6 (CH), 24.6 (CH₂), 25.6 (CH₂), 33.1 (2CH₂), 52.8 (OCH₃), 53.4 (OCH₃), 57.6 (CH-N), 132.0 (C=), 135.2 (CH=), 146.2 (CON), 162.9 (CO₂), 163.4 (CO₂), 169.7 (CO=N). EI-MS *m/z* (rel.int): 366 [M⁺] (14), 283 (86). Anal. Calcd. for C₁₇H₂₂N₂O₇: C, 55.73; H, 6.05; N, 7.65; found: C, 55.67; H, 6.14; N, 7.58.

Diethyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (cyclohexyl imino) methyl]-2- buthene dionate **(4b)**

Colorless oil yield 0.68 g (87%); IR (KBr): 1626 (C=N), 1731 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.08-1.33 (10H, m, 5CH₂), 1.50 (3H, t, *J*=7.1, CH₃), 1.61 (3H, t, *J*=7.1, CH₃), 2.77 (4H, s, 2CH₂), 3.08 (1H, m, CHN), 4.32 (2H, m, OCH₂), 4.33 (2H, m, OCH₂), 7.16 (1H, s, CH). ¹³C NMR (75 MHz, CDCl₃): δ 13.8 (CH₃), 13.9 (CH₃), 23.6 (CH₂), 25.6 (CH₂), 33.1 (2CH₂), 57.5 (CH-N), 62.2 (OCH₃), 62.8 (OCH₂), 132.1 (C=), 135.5 (CH=), 146.4 (CO-N), 162.5 (CO₂), 163.1 (CO₃), 169.6 (CO=N). EI-MS *m/z* (rel.int): 394 [M⁺] (23), 365 (52), 341 (93). Anal. Calcd. for C₁₉H₂₆N₂O₂: C, 57.86; H, 6.64; N, 7.10; found: C, 57.77; H, 6.59; N, 7.02.

Ditert-Buthyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (cyclohexyl imino) methyl]-2- buthene dionate (4c)

Colorless oil yield 0.67 g (74%); IR (KBr): 1634 (C=N), 1730 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.25-1.64 (10H, m, 5CH₂), 1.52 (9H, m, 3CH₃), 1.54 (9H, m, 3CH₃), 2.78 (4H, s, 2CH₂), 3.09 (1H, m, CHN), 7.06 (1H, s, CH). ¹³C NMR (75 MHz, CDCl₃): δ 23.7 (CH), 25.6 (CH₂), 27.8 (3CH₃), 27.9 (3CH₃), 29.68 (CH₂), 33.2 (2CH₂), 57.6 (CH-N), 83.2 (C-O), 83.9 (C-O), 132.2 (C=), 136.4 (CH=), 146.9 (CO-N), 161.7 (CO₂), 162.3 (CO₂), 169.5 (CO=N); EI-MS *m/z* (rel.int): 450 [M⁺] (16), 393 (100), 367 (71). Anal. Calcd. for C₂₃H₃N₂O₇: C, 61.32; H, 7.61; N, 6.22; found: C, 61.24; H, 7.50; N, 6.17.

Dimethyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (t-butylimino) methyl]-2- buthene dionate **(4d)**

Colorless oil yield 0.58 g (86%); IR (KBr): 1629 (C=N), 1739 (C=O) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): δ 1.27 (9H, s, CH₃), 2.79 (4H, s, 2CH₂), 3.75 (3H, s, OCH₃), 3.87 (3H, s, OCH₃), 5.54 (1H, s, CH). ¹³C NMR (75 MHz, CDCl₃): δ 25.6 (3Ch₃), 29.5 (2CH₂), 49.0 (C-N), 52.4 (OMe), 53.6 (OMe), 131.0 (C=), 132.6 (CH=), 147.2 (CON), 163.1 (CO₂), 169.1 (CO=N). EI-MS *m*/*z* (rel.int): 340 [M⁺] (27), 283 (71), 57 (100). Anal. Calcd. for C $_{15}H_{20}N_2O_7$: C, 52.94; H, 5.92; N, 8.23; found: C, 52.83; H, 5.83; N, 8.15.

Diethyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (t-bu imino) methyl]-2- buthene dionate **(4e)**

Colorless oil yield 0.60 g (81%); IR (KBr): 1646(C=N), 1738 (C=O) cm^{-1.} ¹H NMR (300 MHz, CDCl₃): δ 1.13 (9H, s, 3CH₃), 1.30-1.38 (6H, m, 2CH₃), 2.67 (4H, s, 2CH₂), 4.26-4.33 (4H, m, 2OCH₂), 7.09 (1H, s, CH). ¹³C NMR (75 MHz, CDCl₃): δ 14.04, (2CH₃), 25.4 (3CH₃), 30.5 (2CH₃), 54.5 (C-N), 61.5 (OCH₂), 62.1 (OCH₂), 133.4 (C=), 134.6 (CH=), 141.0 (CO-N), 162.9 (CO₂), 163.2 (CO₂), 170.1 (CO=N); EI-MS *m/z* (rel.int): 368 [M⁺] (37), 339 (45), 57 (100). Anal. Calcd. for $C_{17}H_{24}N_{2}O_{7}$: C, 55.43; H, 6.57; N, 7.60; found: C, 55.35; H, 6.62; N, 7.52.

Dimethyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (1, 1, 3, 3-tetra methyl butyl imino) methyl]-2- buthene dionate **(4f)**

The module of the matrix of the module of t

Diethyl-2- [(2, 5-dioxo-1-pyrilydinyl oxy) (1, 1, 3, 3-tetra methyl butyl imino) methyl]-2- buthene dionate (4g)

Colorless oil yield 0.69 g (82%); IR (KBr): 1668 (C=N), 1732 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.01 (9H, s, 3CH₃), 1.31 (3H, t, *J*=7.1, CH₃), 1.34 (3H, t, *J*=7.1, CH₃), 1.47 (6H, s, 2CH₃), 1.74 (2H, s, CH₂), 2.70 (4H, s, 2CH₃), 4.28 (4H, q, *J*=6, 2OCH₂), 6.98 (1H, s, CH). ¹³C NMR (75 MHz, CDCl₃): δ 13.9 (2CH₃), 28.6 (2CH₃), 28.8 (3CH₃), 31.3 (2CH₂), 31.4 (C), 31.6 (CH₂), 51.5 (C-N), 55.7 (OCH₃), 61.5 (OCH₄), 132.5 (C=), 134.7 (CH=), 137.4 (CO-N), 159.3 (CO₂), 160.7 (CO₃), 166.6 (CO=N); EI-MS *m/z* (rel.int): 424 [M⁺] (23), 395 (68), 57 (100). Anal. Calcd. for C₂₁H₃₂N₂O₇: C, 59.42; H, 7.60; N, 6.60; found: C, 59.31; H, 7.48; N, 6.69.

Results and discussions

Reaction of 3, acetylenic esters 2, and isocyanides 1 proceeded spontaneously in CH₂Cl₂, and was completed within a few hours. The ¹H and ¹³C NMR spectra of the crude products clearly indicated the formation of 4. The structures of compounds **4a–4g** were deduced from their IR, ¹H NMR and ¹³C NMR spectra. The mass spectra of these compounds displayed molecular ion peaks at appropriate m/z values. The ¹H NMR spectrum of **4a** in CDCl₃ showed multiplet for the cyclohexyl (δ 1.24-1.65 and δ 3.08 ppm) protons and four singlets for 2 methylenes of succinimide $(\delta 2.79 \text{ ppm})$, methoxy groups ($\delta 3.87$ and 3.91 ppm) and methine (δ 7.20 ppm) porotons. The ¹³C NMR spectrum of 4a exhibited thirteen resonances in agreement with the proposed structure. ¹H and ¹³C NMR spectra of **4b-4g** were similar to those of 4a except for the side chains, which exhibited characteristic resonances in the appropriate regions of the spectra. Partial assignments of these resonances are given in the experimental section. The structural assignments of compounds 4 made on the basis of their NMR spectra are supported by their IR spectra. Of special interest are the imine and ester absorption bands at about 1640 and 1730 cm⁻¹ in all compounds.

It is conceivable that the reaction involves the initial formation of the zwitterionic intermediate **5** between the isocyanide and dialkyl acetylene dicarboxylates (scheme 3). The protonation of **5** by the OH compound **3** leads to **6**. Subsequent attack of the resulting nucleophile **7** on the positively charged ion **6** affords azadiene **4** (scheme 2). The absence of the strong ketenimine absorption bands at

about 2060 cm^{-1} in all compounds excludes the conjugate addition of the anion 7 to the intermediate **6**.

Conclusions

In conclusion, the three-component reaction of N-Hydroxy succinimide with acetylenic esters in the presence of isocyanides provides a simple one-pot synthesis of stable functionalized azadienes. This procedure has the advantages of high yields and mild reaction conditions.

Reference

1. DAM W. KLEIJWEGT P., US Patent 6784142 B2 (2004).

- 2. ZHANG Z., YU L., LIU W., XUE Q., Tribol. Int. 34, 2001, p. 83.
- 3. DAM W., MENASCO M., HARRISON J., LOGAN M., US Patent 20030224948 A1 (2003).
- 4. LUSZCZKI J. J., MARCZEWSKI T., MARZEDA E., DURMOWICZ D., PODGORSKA D., KOCHAROV L. S., FLOREK-LUSZCZKI M., JPCCR **6**, nr. 1, 2012, p. 20.
- 5. JOHN J. P. P., SUNYER B., HOGER H., POLLAK A., LUBEC G., Hippocampus **19**, nr. 8, 2009, p. 731.
- 6. SON Y.J., JANG J.S., CHO Y.W., CHUNG H., PARK R.W., KWON I.C.,

KIM I.S., PARK J.Y., SEO S.B., PARK C.R., JEONG S.Y., J. Controlled Release **91**, nr. 1, 2003, p. 135.

7. LIAO R., WU H., DENG H., YU Y., HU M., ZHAI H., YANG P., ZHOU S., YI W., Anal. Chem. **85**, nr. 4, 2013, p. 2253.

8. DOMLING A., WANG W., WANG K., Chem. Rev. 112, nr.6, 2012, p. 3083.

9. DOMLING A., Chem. Rev. 106, 2006, nr. 1, p. 17.

10. ANARY-ABBASINEJAD M., GHANEA F., ANARAKI-ARDAKANI H., Synth. Commun. **39**, nr. 6, 2009, p. 544.

11. HASSANABADI A., MOSSLEMIN M. H., SALARI M., Chem. Sci. Trans. 1, nr. 1, 2012, p. 111. 12. SADJADI S., HERAVI M., Tetrahedron 67, nr. 15, 2011, p. 2707.

13. HURST T. E., MILES T. J., MOODY C. J., Tetrahedron, **64**, nr. 5, 2008, p. 874.

14. PALACIOS F., APARICIO D., LOPEZ Y., DE LOS SANTOS J. M., EZPELETA J. M., Tetrahedron, **62**, nr. 6, 2006, p. 1095.

15. ROBIN A., JULIENNE K., MESLIN J. C., DENIAUD D., Tetrahedron Lett., 45, nr. 52, 2004, p. 9557.

16. MORTON D., PEARSON D., FIELD R. A., STOCKMAN R. A., Org. Lett. 6, nr. 14, 2004, p. 2377.

17. GROENENDAAL B., RUIJTER E., ORRU R. V. A., Chem. Commun., nr. 43, 2008, p. 5474.

18. SCHRAMM O. G., DEDIU N., OESER T., MULLER T. J. J., J. Org. Chem. **71**, nr. 3, 2006, p. 3494.

19. SRIDHARAN V., PERUMAL P. T., AVENDANO C., J. CARLOS MENENDEZ, Tetrahedron **63**, 2007, p. 4407.

20. PALACIOS F., VICARIO J., APARICIO D., Eur. J. Org. Chem. nr. 12, 2006, p. 2843.

21. SHIMIZU M., TAKAHASHI A., KAWAI S., Org. Lett. **8**, nr. 16, 2006, p. 3585.

22. SRIDHARAN V., PERUMAL P. T., AVENDANO C., MENENDEZ J. C., Tetrahedron, **63**, nr. 21, 2007, p. 4407.

23. MOHTAT B., FARSIJANI S., RAZAGHI M., DJAHANIANI H., J. Mex. Chem. Soc. 57, nr. 2, 2013, p. 92.

24. MOHTAT B., REZAZADEH S., MATINFAR M., ARABZADEH V., DJAHANIANI H., HOSSAINI Z., Lett. Org. Chem. **9**, nr. 2, 2012, p. 150. 25. MOHTAT B., DJAHANIANI H., KHORRAMI R., MASHAYEKHI S., YAVARI

L, Synth. Commun., **41**, nr. 6, 2011, P. 784.

26. MOHTAT B., MATINFAR M., REZAZADEH S., DJAHANIANI H., Indian J. Chem., **52 B**, nr. 9, 2013, p. 1232.

27. MOHTAT B., DJAHANIANI H., YAVARI I., NADERI K., J. Serb. Chem. Soc., **76**, nr. 1, 2011, p. 13.

28. MOHTAT B., DJAHANIANI H., YAVARI I., DEHBALAEI M. G., JAM S. A., Chin. Chem. Lett. **22**, nr. 7, 2011, p. 771.

Manuscript received: 4.05.2016